A secant method for nonlinear least-squares minimization

نویسندگان

  • Wei Xu
  • Thomas F. Coleman
  • Gang Liu
چکیده

Quasi-Newton methods have played a prominent role, over many years, in the design of effective practical methods for the numerical solution of nonlinear minimization problems and in multi-dimensional zero-finding. There is a wide literature outlining the properties of these methods and illustrating their performance [e.g., [8]]. In addition, most modern optimization libraries house a quasi-Newton collection of codes and they are widely used. The quasi-Newton contribution to practical nonlinear optimization is unchallenged. In this paper we propose and investigate an efficient quasi-Newton (secant) approach to the nonlinear least-squares problem, made practical due to the selective application of automatic differentiation (AD) technology. We also observe that AD technology can increase the efficiency of the standard quasi-Newton (positive definite secant) approach to the full nonlinear minimization approach to this problem and we compare these two AD-assisted methods. Finally, we compare the AD-assisted approaches to a standard globalized Gauss-Newton method.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Using an Efficient Penalty Method for Solving Linear Least Square Problem with Nonlinear Constraints

In this paper, we use a penalty method for solving the linear least squares problem with nonlinear constraints. In each iteration of penalty methods for solving the problem, the calculation of projected Hessian matrix is required. Given that the objective function is linear least squares, projected Hessian matrix of the penalty function consists of two parts that the exact amount of a part of i...

متن کامل

Constrained Nonlinear Least Squares: A Superlinearly Convergent Projected Structured Secant Method

Numerical solution of nonlinear least-squares problems is an important computational task in science and engineering. Effective algorithms have been developed for solving nonlinear least squares problems. The structured secant method is a class of efficient methods developed in recent years for optimization problems in which the Hessian of the objective function has some special structure. A pr...

متن کامل

Quasi-newton Methods for Nonlinear Least Squares Focusing on Curvatures

Most existing quasi-Newton methods for nonlinear least squares problems incorporate both linear and nonlinear information in the secant update. These methods exhibit good theoretical properties, but are not especially accurate in practice. The objective of this paper is to propose quasi-Newton methods that only update the nonlinearities. We show two advantages of such updates. First, fast conve...

متن کامل

Super linear Projected Structured Exact Penalty Secant Methods for Constrained Nonlinear Least Squares

We present an exact penalty approach for solving constrained nonlinear least squares problems, using a new projected structured Hessian approximation scheme. We establish general conditions for the local two-step Q-superlinear convergence of our given algorithm. The approach is general enough to include the projected version of the structured PSB, DFP and BFGS formulas as special cases. The num...

متن کامل

New Optimization Approach to Multiphase Flow

A new optimization formulation for simulating multiphase flow in porous media is introduced. A locally mass-conservative, mixed finite-element method is employed for the spatial discretization. An unconditionally stable, fully-implicit time discretization is used and leads to a coupled system of nonlinear equations that must be solved at each time step. We reformulate this system as a least squ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Comp. Opt. and Appl.

دوره 51  شماره 

صفحات  -

تاریخ انتشار 2012